An Efficient Synthesis of 5-Hydroxy-4-oxo-L-norvaline from L-Aspartic Acid¹

Alexander Golubev, Norbert Sewald, and Klaus Burger*

Organisch-Chemisches Institut der Technischen Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany

Key words: antibiotics, L-aspartic acid, 5-hydroxy-4-oxo-L-norvaline, multifunctional amino acids, hexafluoroacetone.

Abstract: A synthesis of the antibiotic (-)-HON (5-hydroxy-4-oxo-L-norvaline, RI-331) from L-aspartic acid using hexafluoroacetone as protecting reagent is described.

In 1957 F. Weygand et al.² described a synthesis of the fully protected 5-hydroxy-4-oxo-L-norvaline [(-)-HON], before its antibiotic properties were recognized. In 1961 (-)-HON 5 was isolated from *Streptomyces* H-8998^{3,4} and later from *Streptomyces akiyoshiensis* novo sp.⁵⁻⁷.

5 exhibits antibiotic activity towards human and bovine types of tuberculum^{3,4} and antifungal activity by inhibition of protein synthesis resulting from depletion of several amino acids like isoleucine, methionine, serine and threonine in the cellular pool⁵⁻⁷.

A synthesis of racemic HON 5 is known since 1960^8 . Stereoselective syntheses of (-)-HON starting from (R)-2,3-O-isopropylideneglyceraldehyde⁹ or L-aspartic acid¹⁰ were accomplished recently. These findings prompt us to report on our approach to (-)-HON.

The efficiency of our route is based on a new protective group strategy. Hexafluoroacetone and L-aspartic acid react to give compound 1. A selective protection of the α -amino and the α -carboxylic group is achieved in only one step. The ω -carboxylic group remains unaffected and can be derivatized regioselectively¹¹.

On reaction with thionyl chloride the acid chloride 2 is formed $(84\%^{12})$, which on treatment with diazomethane is transformed into the diazoketone 3 $(91\%^{13})$. Decomposition of 3 with various carboxylic acids provides access to fully protected (-)-HON 4. The formyl group is superior to other O-protective groups introduced via this route. All three protected functional groups in compound 4 can be deprotected simultaneously on treatment with water/isopropanol at room temperature¹⁴. The total yield of pure (-)-HON¹⁵ via this route is 35% referring to L-aspartic acid.

The possibility to transform 2,2-bis(trifluoromethyl)-1,3-oxazolidin-5-ones into the corresponding α -amino acids on treatment with water/isopropanol at room temperature renders hexafluoroacetone an interesting protective group for functional group transformations in certain multifunctional amino acids. Protection and deprotection is achieved without racemization in high yields.

Acknowledgement

We are grateful to DAAD for a grant (to A. G.) and Hoechst AG, Frankfurt/Main for generous supply of chemicals.

References and Notes

- 1. Hexafluoroacetone as Activating and Protecting Reagent in Amino Acid and Peptide Chemistry, part 17; part 16: Windeisen, E.; Pires, R.; Heistracher, E.; Burger, K. *Amino Acids*, in press.
- 2. Weygand, F.; Klinke, P.; Eigen, I. Chem. Ber. 1957, 90, 1896-1905.
- 3. Kanazawa, K.; Tsuchiya, K.; Araki, T. Am. Rev. Respirat. Diseases 1960, 81, 924.
- Tatsuoka, S.; Miyake, A.; Hitomi, H.; Ueyanagi, J.; Iwasaki, H.; Yamaguchi, T.; Kanazawa, K.; Araki, T.; Tsuchiya, K.; Hiraiwa, F.; Nakazawa, K.; Shibata, M. J.Antibiotics (Japan) Ser. A 1961, 14, 39.
- Yamaguchi, H.; Uchida, K.; Hiratani, T.; Nagate, T.; Watanabe, N.; Omura, S. Ann. N. Y. Acad. Sci. 1988, 544, 188.
- Yamaki, H.; Yamaguchi, M.; Nishimura, T.; Shinoda, T.; Yamaguchi, H. Drugs Exp. Clin. Res. 1988, 14, 467.
- 7. Yamaguchi, M.; Yamaki, H.; Shinoda, T.; Tago, Y.; Suzuki, H.; Nishimura, T.; Yamaguchi, H. J. Antibiotics 1990, 43, 411.
- 8. Miyake, A. Chem. Pharm. Bull. 1960, 8, 1074.
- 9. Schmidt, U.; Stäbler, F.; Lieberknecht, A. Synthesis 1992, 482.
- Baldwin, J. E.; Adlington, R. M.; Godfrey, Ch. R. A.; Gollins, D. W.; Smith, M. L.; Russel, A. T. Synlett 1993, 51.
- 11. Burger, K.; Rudolph, M. Chem.-Ztg. 1990, 114, 249.
- 12. Burger, K.; Gold, M.; Neuhauser, H.; Rudolph, M. Chem.-Ztg. 1991, 115, 77.
- 13. Burger, K.; Rudolph, M.; Neuhauser, H.; Gold, M. Synthesis 1992, 1150.
- 14. Burger, K.; Rudolph, M.; Neuhauser, H. Liebigs Ann. Chem. 1991, 1365.
- 15. The physical and spectral data of 5 are identical to those quoted for the natural antibiotic^{9,10}.

(Received in Germany 23 June 1993; accepted 19 July 1993)